The plan to discontinue three natural gas plants in Los Angeles is partly justified by pointing to the problems of relying on ocean water needed for cooling the plants. An overview of the various negative impacts of this process can be found here.
West Austin is home to a number of vulnerable species of amphibians and birds, as well as revered spaces of recreation (i.e. Barton Springs) that have garnered support to prevent development in these areas, but at the expense of the gentrification of Central East Austin (Walsh 2007; Tretter 2016; Busch 2017).
Flooding has always been a problem in Austin but, with climate change, the rate and intensity of floods has substantially increased. The Atlas 14 study conducted by the National Oceanic and Atmospheric Administration showed a 33% increase in the amount of rain that could fall in a 24-hour period (Holtgrieve and Neely 2019). This puts an additional 3,200 buildings and residences (increased from 4,000-7,200) at risk of flooding.
In August of 2011, one of the hottest years on record in Austin, the Texas grid was put at severe risk due to higher than normal use of AC units. A similar event happened in July of 2018, when hourly consumer demand set back-to-back records over the course of 2 hours, when peak load exceeded 72,000 MW (Rhodes 2018). That record was broken the following day when ERCOT registered 73,000 MW.
Through participant observation and interviews, I will gather data on how climate change has impacted the way this project’s thought collectives think about and use energy and energy technology, as well as if and how this has impacted their energy politics.